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ESTIMATION U P  T O  A CHANGE-POINT1 

University of Pennsylvania and University of Texas at Austin 

Consider the problem of estimating p ,  based on the observation of 
Yo, Y,, . . . ,Y,, where it is assumed only that Yo, Y,, . . . ,Y, iid N ( p ,c2)for 
some unknown K .  Unlike the traditional change-point problem, the focus 
here is not on estimating K ,  which is now a nuisance parameter. When it is 
known that K = k ,  the sample mean Fh = c;Y,/(~ + 11, provides, in addi- 
tion to wonderful efficiency properties, safety in the sense that it is mini- 
max under squared error loss. Unfortunately, this safety breaks down 
when K is unknown; indeed if k > K ,  the risk of Fk is unbounded. To 
address this problem, a generalized minimax criterion is considered whereby 
each estimator is evaluated by its maximum risk under Yo, Y,, . . . ,Y, iid 
N ( p ,u2)for each possible value of K .  An essentially complete class under 
this criterion is obtained. Generalizations to other situations such as 
variance estimation are illustrated. 

0. Introduction.  Consider the following problem of combining data. Sup- 
pose we want to estimate a scalar p based on n + 1observations Yo, Yl, . . . ,Yn, 
where we are only willing to assume that Yo, Yl, . . . ,Y, iid N(p, u2)for some 
unknown K,  p and a2.The situation we have in mind is that Yo, Y,, . . . ,Y, 
represents a time series in reverse order, say, X,,Xt-,, . . . ,Xt-,. Thus, Yo 
(= X,) would be the current observation for which we believe the model 
N(p, a') held, and K might be called the duration of the model. The dilemma 
is that we would like to obtain many replications from the past to increase 
estimation precision, while guarding against using unrelated observations 
which might increase bias. 

This problem is similar to the traditional change-point problems where the 
goal is typically to detect and/or to estimate an abrupt change in the distribu- 
tion of a sequence of observations. These change-point setups assume that the 
sequences before and after the change-point are at least exchangeable. Often 
the before and after distributions belong to the same parametric family and 
differ by only one or two parameters. The literature on the problems is vast; 
see, for example, Brown, Durbin and Evans (1975), Chernoff and Zacks (19641, 
Hinkley (1970), Siegmund (1986) and Smith (1975, 1985). Our problem, 
however, differs from this literature in two important respects. First, although 
our setup allows for an abrupt change in the distribution of the observations, 
no structure at all is imposed after the change. Second, our focus is on 
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estimating a characteristic of the prechange distribution rather than the time 
of change, which is now a nuisance parameter. Our problem is much more one 
of pooling data for efficient estimation. Similar goals are addressed by Mosteller 
(1948) in a related pooling problem with more structure. 

The outline of this paper is as follows. In Section 1, we formalize the 
problem and define and motivate various risk criteria. These include a general- 
ized minimax criterion and a risk inflation criterion which measures the price 
of not knowing the change-point K .  Preliminary estimators based on heuristic 
considerations are examined from this point of view. In Section 2, character- 
izations of the class of equivariant estimators are obtained along with conve- 
nient expressions for our generalized minimax criterion. In Section 3, we 
obtain a generalization of the Hunt-Stein theorem which shows that any 
estimator which is generalized minimax (according to our criterion) within the 
class of equivariant estimators is generalized minimax overall. In Section 4, an 
essentially complete class with respect to our generalized minimax criterion is 
obtained. This class is a substantially restrictive subclass of equivariant esti- 
mators. In Section 5 ,  we derive a lower bound for the risk inflation of any 
estimator and describe estimators which obtain this bound. Finally, in Section 
6 we describe how our results may be easily extended to other examples of 
interest, such as where the initial model is a double exponential distribution or 
a chi-square distribution. 

1. Formalizing the problem. We formalize our problem as follows. Let 
Y = (Yo,.. . ,Y,) be the observed sequence of observations. We assume that F, 
the unknown distribution of Y, belongs to at  least one of the following families 
of distributions: 

(1.1) Fk= {F: Yo,. . . ,Yk iid N ( p ,  a2 ) ) ,  k = 1,.. . ,n ,  

where p and u 2  are unknown. (Because both p and u 2  are unknown, at least 
two "good" observations, Yo and Y,, are needed and so we restrict k 2 1.) 
Note that these families are nested, Fl2 . . . 2 F,, and that any F E 9, is 
identified by p and u2. Defining the change-point 

shows how this setup formalizes the situation described in the introduction, 
where Yo, Yl, . . . ,Y, - iid N(p,  a 2 )  for some unknown K,  p and u2. 

Under this setup, a natural criterion for evaluating an estimator 6 = S(Y) 
of p (= EY,) is the risk criterion of expected scaled squared error loss, 

where F E Fkfor some k E 11, . . . ,n). Unfortunately, because of the vast 
size of the parameter space (1.1), assessment of estimators by their entire risk 
functions is an overwhelming task. Instead, we adopt the strategy of using 
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summary risk criteria, which capture properties which any good estimator 
should possess. In particular, we focus on keeping small the maximum risk 
(MR) under each of the F,, namely, 

MR(Fk ,6 )  = sup R ( F , S )  fork = 1, . . . ,n .  
F E  Fh 

For example, consider the estimator 

the mean of Yo,. . . ,Y,. In this case, MR(5 ,  Y,) = l / (k  + 1) for j 2 k and 
MR(5 ,  F,) = for j < k. Note that although MR(Fk, 6) is minimized at 
MR(Fk, Y,) = l /(k + I), the trade-off between precision and potential bias is 
extreme for these k th partial means. 

In an effort to correct for the deficiencies of Y,, one might consider an 
estimator of the form YT, where T is an estimator of the change-point K .  For 
simplicity, suppose u2= 1were known. Because when k < K,  (Fk+l- Yk)-
N(0,a:), where a: = l /(k + l)(k + 2), a reasonable choice for T might be 

(1.6) T* = inf{k: - Fk> ca,}, or n ifno such k ,  

where c is a prechosen constant. Note that, equivalently, 

so that T * is a stopping time based on prediction. 
The intuitive appeal of YT* is that it may capture some of the efficiency of 

the mean, while guarding against a disastrous change in the underlying 
process. This trade-off is controlled by c. If c is too small, then T* << K and 
YT* will lose efficiency, whereas if c is too large, then T* >> K and YT* may 
include substantially biased observations. These characteristics are made pre- 
cise by examining MR(Fk, YT*) for k = 1,. . . ,n. This can be calculated by 
noting that, for any c and k < n, there exists a "malicious" G i  E Fkwith 
K(G,*)= k such that 

PG;[T*> k ]  = P,;[T* = n ] ,  
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Thus 

= sup - P ) ~ T *= j ] P,[T*iE ~ [ ( ~  = j ]  
F E Fkj =  1 

where 7 ~ ,= 2@( -c) for @ the standard normal cdf. Note that the calculation 
of the expectations and probabilities in the second equality above depends only 
on the fact that G, E F,.Interpreting the final equality of (1.8), the terms on 
the left for j < k account for a loss of efficiency, whereas the rightmost 
expression accounts for potential effect of bias. Although c can be chosen to 
minimize MR(Fk, Y,*) in (1.8) for a particular k, no uniformly best choice of c 
exists which minimizes (1.8) for all k. 

As illustrated by Yh and YT*, there is unfortunately no 6 which simultane- 
ously minimizes MR(Fl, a), . . . ,MR(Fn, 6). The MR criterion is vector-valued 
and imposes only a partial ordering on the class of all estimators. Nonetheless, 
this criterion can be used to rule out many estimators. 

DEFINITIONS.An estimator 6 is said to be MR-dominated by another 
estimator 6" if MR(Fk, 6") 5 MR(Fk, 61, k = 1,. . . ,n ,  with strict inequality 
for some k. An estimator 6 is said to be MR-admissible if it is not MR- 
dominated by another 6". A class of estimators is said to be essentially 
complete with respect to MR-admissibility if, given any estimator 6, there 
exists an estimator 6" in the class for which MR(Fk, 6") 5 MR(Fk, 6) for 
k = 1, . . . ,n.  

MR-admissibility is in fact a generalized minimax criterion. When n = 1, 
MR-admissibility reduces to ordinary minimaxity. Note that MR-admissibility 
is different than admissibility in terms of risk. Indeed, neither implies the 
other. 

Another approach to selecting an estimator with satisfactory MR(Fk, 6) for 
all k is to consider a one-dimensional summary criterion such as the following. 
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The risk inflation (RI) of an estimator 6 is defined to be 

(1.9) RI(6) = max sup R ( F 6 )  = mnx[(k + ~ ) M R ( & , R ) ] ,[ ]
F I E &  R ( ~ , F ~ )  

where the second equality follows from the fact that for all F E F k ,  
R(F, Yk) = l / (k  + 1). The motivation for the risk inflation of 6 is based on 
the fact that 6 = Fk is minimax on 4,that is, MR(Fk, yk) = inf, MR(Fk, 6) 
and so is best in terms of MR. Thus, RI(6) is a measure of the price of not 
knowing K .  Estimators with small risk inflation are desirable. A similar risk 
inflation measure is considered in the context of multiple regression by Foster 
and George (1993). 

For k > 1,it is easy to see that RI(Y,) = co in accordance with the fact that 
using Fk when k > K can be extremely dangerous. On the other hand, 
RI(Y~)= (n + 1)/2, in accordance with the fact that for its extreme safety, Fl 
can pay a very high price in efficiency. It is interesting to consider the risk 
inflation of the adaptive compromise FT*.It can be shown, using (1.81, that 
RI(Y,*) is minimized at c .= d w ,where 2MR(37, yT*) is the dominant 
term, and RI(F,*) = Note that as n increases, RI(F,*) grows much 2(log 7 ~ ) ~ .  
more slowly than RI(Y,) = (n + 1)/2. 

An even better alternative to yT*(again assuming a2= 1) is FT**, where 
-

(1.10) T** = inf k: Fk+,- Y, 1 > cakj for some j r k , or n ifnosuch k ,  ( 1 
a k j  = 1/d= + l / d J T  and c is a prechosen constant. The intuitive 
advantage of this estimator over YT* is that it does not allow a gradual 
departure from the initial model. Although it is difficult to obtain an exact 
expression for MR(Fk, YT**), an argument similar to (1.9) obtains the bound 

where FkE F k .  Furthermore, it can be shown that (using the same c) T* is 
more likely to stop sooner than T **  (more precisely, for any F E F k ,  
P,[T* = j ]  2 PF[T**= j ] for j r k). Thus, the left-hand "efficiency loss term" 
in (1.11) is less than the corresponding term for Y,* in (1.9). I t  can also be 
shown, using (1.8), that a bound for RI(Y,*) is obtained when c = d-, 
where the bound for 2MR(F1, YT**) is the dominant term. This yields the 
bound R1(FT,,) r 3.3log n ,  a substantial improvement over RI(Y,*). We show 
in Section 5 that this is close to the best possible risk inflation, which is 
O(1og n). Although it is difficult to obtain a more complete analytical compari- 
son of YT** with YT*, we show in Section 4 that in terms of MR, estimators 
similar to YT**are preferable to FT*. 
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The main thrust of the next three sections is to obtain usefully restrictive 
classes of estimators of p which are essentially complete with respect to 
MR-admissibility. Our principal reduction is obtained by a generalization of 
the Hunt-Stein theorem which enables us to restrict attention to equivariant 
estimators. We then obtain an essentially complete subclass of the equivariant 
estimators which are similar to Y,**. In Section 5, these results enable us to 
obtain a lower bound on the risk inflation of any estimator. 

2. A class of equivariant estimators. In this section we describe a 
natural class of equivariant estimators for our problem. Based on the location 
and scale invariance of the general problem, we consider estimators satisfying 

for all real a ,  b with b > 0 [i.e., S(a + byo,.. . , a  + by,) = a + bS(Yo,.. . ,Y,)]. 
Such estimators are location and scale equivariant. 

DEFINITION.Let 8 denote the class of equivariant estimators, that is, 
those satisfying (2.1). 

Investigation of the members of B is greatly facilitated by making use of 
the following representations. Based on (2.0,  any 6 E B may be expressed as 

(2.2a) S(Y) = Yk + Vkwk(Sk,Tk)fork = 1, . . . ,n ,  

and okis an arbitrary real-valued function. Note that under F E Fk,Yk, Vk 
and Skare independent. 

In order to treat any S E B as sequentially determined, it is useful to 
consider the following sequential bounds. The largest and smallest possible 
values for S after only Yo, . . . ,Yk have been observed are given by 

(2.3a) Yh + VkWk+(Sk), where W:(Sk) = sup o k ( S k ,  Tk) 
"7 

and 

(2.3b) yk+ f k W i ( S k ) ,  where Wi (Sk)  = i n fok (Sk ,Tk) ,  
Tk 


respectively. The functions W,+ (Sk)  and Wi (Sk are important characteristics 
of ok(Sk ,  Tk). For example, the next result shows that for any S E & these 
characteristics determine MR(Fk, 6). 
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LEMMA2.1. For any 6 E B, 


where E,, ,is expectation with respect to Yo,. . . , Yk iid N(0,l). 

PROOF. The maximum risk under Fkof 6 E B may be expressed as 

MR(Fk,  6) = sup E IE $ , ~ ~ , ~ ~  1u 

F h  

Another useful representation of 6 E B, which is easy to conceptualize, is 
as a sequence of nested intervals. Define, for k = 1 , .. . ,n ,  the sequence of 
intervals 

(2.5) Bk = [ B;, B;] = [yk+ vkw;(Sk), yk+ vkW,i(Sk)], 

which by the definition of W; and W; in (2.3) are nested. Thus, any 
equivariant 6 may be defined by the sequence B,, . . . , B, as 

(2.6) B , 2 B 2 2  . . .  2 B n = S ( Y ) .  

I t  can happen that, for some k < n, Bk will also be a single point, in which 
case 6 is determined by Yo, . . . ,Yk. Our next result, which follows directly 
from Lemma 2.1 and (2.5), shows how the maximum risk of S E B over Fk 
may be conveniently expressed in terms of its corresponding interval Bk. 

LEMMA 2.2. For any 6 E B, MR(Fk, 6) = EF[sup,, ,,[(x - p)/a]2] for 
any F E F k .  

which contain 
"good" estimators. In particular we shall focus on the following subclass. 

DEFINITION.Let 6 d cB denote the class of estimators which are MR- 
admissible within 8 .  (Thus 6 E B d  iff 6 E B and no other 6* E 8 MR-
dominates 6.) 

6' investigate subclasses of In the next two sections we 
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In Section 3, we show that B d  is essentially complete with respect to 
MR-admissibility. Thus, in terms of MR, one can restrict attention to B d . In 
Section 4, we show that B d  consists of estimators 6 whose corresponding 
sequence of intervals B,, . . . , B, from (2.5) are as follows. For any Y, first 
define for k = 1, . . . , n, the "t-intervals" around the successive partial means 

where W,, . . . ,W, is a sequence of (possibly infinite) predetermined nonnega- 
tive constants with W, = 0. Also, let h,: R + R, k = 1,. . . ,n, be a sequence of 
predetermined functions with h,(.) = 0. Starting with Bo = ( -co, co), the 
sequence of intervals B,, . . . , B, is defined recursively by the following: 

if C, c BE-,, then Bk = C, ; 

if C, gBE-,  and ykk Bi-,  + B:-, 
92 

then B:= BL-, and 

Bi - I  + B:-,
if C, g BE-, and 5 ,2 

then B;= B;-, and 

B~-,,Y, + vkhk[ yk - ( i l  I]] , 

where BE denotes the interior of B,. In order to understand this construction 
better, the reader may find it useful to consider the special case of (2.7) with 
h k  = W,. 

For general 6 defined by (2.7), if the successive partial means TI,. . . , Y, _do 
not vary "too much" so that C, 2 C2 2 . . . 2 C,, then 6(Y) = C, = Y,. 
However, if yk is far from the middle of B,-, so that this nesting does not 
hold, then 6(Y) will be constrained to lie in Bk-,. It is interesting to compare 
6 (with V, = 1 to account for u 2  = 1) and yT**defined by (1.10). Both 
estimators force the estimate to be contained within the intersection of 
intervals about previous means yk. However, unlike yT**,6 does not necessar- 
ily use one of the y, as the estimate. Instead 6 may select an estimate closer 
than Y, to the first "incompatible" y, + ,. 

We close this section by remaking that, for the case where u 2  is known, all 
of the previous results hold by setting Vk = 1 throughout. In this situation, 
the class B is replaced by translation equivariant estimators of the form 
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3. The essential completeness of 6d. In this section we show that 
the class & d  is essentially complete with respect to MR-admissibility; that is, 
for any 6 @ &d,there is a 6" E &dwhich is at  least MR-equivalent to it. 
Since of course &dc 8,this then shows that & is essentially complete. This 
result is obtained by using the basic ideas of the Hunt-Stein theorem [see 
Berger (1985) and Lehmann (1986)l. The Hunt-Stein theorem, which demon- 
strates the overall minimaxity of rules which are minimax within the class of 
invariant rules, holds in general for statistical problems which are invariant 
under amenable groups [see Bondar and Milnes (1981)l. Although the 
location-scale group of our problem is amenable, our result extends the 
Hunt-Stein result to MR-admissibility, a generalization of minimaxity. 

Our results here are presented in terms of Lemma 3.1, which shows that 
any estimator 6 can be MR-approximated by some 6* E 8,and Theorem 3.1, 
which concludes with the essential completeness of & d .  For simplicity of 
notation and argument, the proofs of these results (which may be skipped with 
no loss of continuity), only consider the case where u2= 1is known so that 6 
is a translation equivariant estimator of the form (2.8). The details of the 
general case are similar. The proofs are based on the idea that if it were 
possible to construct 6" E & from 6 via 6*(Y) = /[6(Y + t) - t] dt, then S* 
would be MR-equivalent to or MR-better than 6 by Jensen's inequality. 
Lemma 3.1 approximates this construction to obtain 6* E & which has MR 
within E of 6. Theorem 3.1 then uses a topological argument to show that the 
limit of such estimators is in B d  and is MR-equivalent to 6. 

LEMMA3.1. For any 6 and E > 0, 3 6* E B such that MR(Yk, a*) < 
MR(Fh, 6) + E for all k .  

PROOF.For some constant A > 0 (to be determined), we will need the 
following intermediate estimators: 

( Y l + A ) ,  i f6 (Y)  2 ( Y l + A ) ,  

(3.1) 	 otherwise, 

(Yl - A ) ,  if 6(Y) I (Y, - A ) ,  

where 1. J is the greatest integer part operator, and M is a large integer to be 
chosen later. Based on these estimators, we will show that 

is the desired estimator. Note that because 6"(Y + 4Ai) = 6"(Y) + 4Ai for all 
integer i,  it follows that 6*(a + Y) = a + 6*(Y) for all a ,  that is, 6* E &. It 
also follows immediately from this construction, using Jensen's inequality, 
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that for all k ,  M R ( 3 ,  G*) I M R ( 3 ,  6"). Since we may pick A large enough so 
that, for all k ,  MR(Fk,8") I MR(Fk,8) + ~ / 2 ,it suffices to show that we can 
choose A and M large enough so that MR(Fk,6") 1MR(Fk,6") + ~ / 2 .We 
consider two cases. 

CASE1(A I p mod 4A I 3A). First choose A large enough so that 

[As before, F, - N(p, 1/21,] NOWon the set where IF,- pi < A, 

Gc(Y) = 4A[p/4A] + Gb(Fl- 4A[p/4A],  T,), 

while if IFl - pI 2 A, 16" - TI)I A (this is always true by the definition of 
6"). Thus, 

where the last inequality follows by Jensen's inequality. 

CASE2 (0 I p mod 4A I A or 3A I p mod4A I 4A). We will consider 
0 I p mod 4A I A. The other case follows similarly. First note that 

Thus, if Yl mod4A I 2A, 

and if Yl mod4A > 2A, 

Thus, 

where IRI I 2A. Thus, for M large enough and transforming Y to (Y - 2A), 
the argument for Case 1may be used to show MR(Fk,6') I MR(Fk,6") + ~ / 2 .  
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THEOREM3.1. The class &d is essentially complete with respect to MR-
admissibility. 

PROOF. We will show that for any 6 there exists 6" E &d such that 
MR(Fk,6") _< MR(Fk,6) for all k. By Lemma 3.1, there exists a sequence 
S1, 62,. . . E & such that 

lim sup MR( Fk,a , )  I MR( Fk, 6 )  for all k . 
i-cc 

Furthermore, the sequence can be chosen so that no other 6' has the property 
of MR-dominating the limit, that is, MR(Fk,6") I liminf, ,,MR(Fk, 6,) for 
all k, with strict inequality for some k. Therefore, it suffices to find an 
estimator 6* E & such that 

(3.5) MR(Fk,6*) _< liminf MR(Fk,6,) 
Z'cc 

for all k. By (2.21, we may express 6, as 6,(Y) = 7, + w",(S) (recall V, = 1 
since we are assuming a2= 1). Now from the sequence 6,, 6,, . . . we may 
extract a subsequence 6,,, . . . E & such that (S,, w$(S,)) converges in 
distribution as j + w. ~urihermore,there exists a random vector, say, 
(S,, w:(S,)), which has this limiting distribution. However, then the (possibly 
randomized) estimator 6" = y, + w:(S,) belongs to & and satisfies (3.5) for 
k = n,  by the continuous mapping theorem. 

It remains to show that 6" can be modified (on a set of measure zero) to 
satisfy (3.5) for all k. For the estimator a, ,  let W,+,"WW,-,~,k = 1, . . . ,n,  be the 
corresponding bounds in (2.3) (recall that W,f," WW,-,~= wk). From the subse-
quence ail, . . extract a further subsequence 6,;, Sig,.. . E & such that 

converges in distribution as j + w. (Note that the redundancy in this vector 
causes no problem for convergence in distribution.) Now there exist W?", Wl,", 
k = 1 , . . . ,n, with the property that (S,, Wpm,W;,", S,, W2", W;,", . . . , 
S,, W:", W;,") has the limiting distribution of (3.6). Since Wh+,m,W? " are 
independent of Y,, i > k for k = 1 , . . . ,n, we may recursively construct ran-
domized W> ",Wl," which depend only on Skand W?", W,-'" for i < k. Now 
define 

where k* = sup{k: flf=,[r- V V - 3  ", + W,+,"I # 4). Clearly, the (possibly 
randomized) estimator 6* belongs to &. Furthermore, yk- W;," I 6* I 7, + 
W?" so that by Lemma 2.1 and the continuous mapping theorem, 6* satisfies 
(3.5) for all k. 

Note that if 6* above is a randomized rule, it can be replaced by 6** = 

E(S*IY) E &d. 
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4. A partial characterization of E d .  The purpose of this section is to 
show that all estimators in & d  must satisfy (2.7a) and (2.7b). Theorem 3.1 
then shows that the class of estimators of the form (2.7a)-(2.7b) is essentially 
complete. Although the result (2.7a)-(2.7b) stops short of a full characteriza- 
tion of members of 6d,it does eliminate many equivariant estimators which 
can be MR-dominated. Many of these results are obtained using the following 
lemma, which allows for a partial "Rao-Blackwellization" of any S E 6. 

LEMMA4.1. For any 6 E 6 ,  FnE E,g:  [Wk+l-+ R and equivariant 2: 
[Wk+l+ R,the following hold: 

(i) 6*(Y) = EFn[S(Y)lg(Sk),Fk,Vk,Tk]has MR(T,6*)  IMR(T,S)  for 
j 2 k. 

(ii) 6*(Y) = EFJS(Y)lg(Yo,. . . ,Yk),Yk,Vk, Tk] has MR(5 ,  S*) I MR(T,6)  
for j  2 k. 

PROOF.(i) I t  suffices to show that for j 2 k, for any F E q there exists 
F *  E such that R(F, a*) I R(F*, 8). From this it will follow that 
MR(5 ,  S*) I MR(T, 6). 

For F E 3$,define F *  to be the probability distribution satisfying 

where F,* E is such that Yo, . . . ,I;. has the same distribution under F,* 
and F. Note that 

First we show that F *  E q.Let A be a cylinder set A = Aj x Rn-j, where 
AJ c [Wjfl. I t  suffices to show PF*(Y E A) = PF(Y E A). Letting IA(Y) be the 
indicator function of A, 

Writing S* = Yk + w2vk, where w: 5 EF;[wklg(Sk), Yk, v,, T,], it now follows 
that R(F, S*) IR(F*, 6) since 

where EF(yk - pI2 = EF*(yk- pI2 because F, F *  E 5c Fk,and 
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by (4.0,  and 

by Jensen's inequality. 
Statement (ii) follows from statement (i) by letting g = 7, + Vkg. 

The following lemma, based on an enhancement of Jensen's inequality, 
shows when a convex combination of estimators obtains a strict improvement 
in MR. 

LEMMA4.2. Let 6, 6" E F.Suppose for some k ,  MR(Fk,6") IMR(Fk,6) 
and that the intervals Bk and B,* from (2.5) are such that, for any F E F,, 
PJB, # B,*l > 0. Then for any p E (0,1), 6** = p6 + (1 - p)6** has 
MR(Fk,a**) < MR(Fk,6). 

PROOF.If MR(Fk,a*) < MR(F,, a), the result follows directly from 
Jensen's inequality. When MR(F,, 6") = MR(Fk,a), let B,** be the interval 
for 6** from (2.5). For any FkE F,with u2  = 1,we have by Lemma 2.2 that 
M R ( 6 ,  a**) = EFkrnax[(~;*+- p )2 , (~ ,** - -p)']. 

Because 

pB:+(l - p)B,*+2B;*+ and B,**-2 p B ~ + ( l- p)B;-, 

it follows that 

Without loss of generality, assume that PFk[B,f#B;+] > 0. Thus, for p 
small, there exists a set A with PFk[A]> 0 such that, on A, B:# B,*+ and 
(p(Bhf- p)' + (1 - p)(B,*+- p)2] is the larger term in the middle expression 
of (4.2). It is straightforward to show that on A, the final inequality of (4.2) is 
strict. By taking expectations (under &)of the two sides of (4.2) we then have 

MR(Fk,6**) < pMR(F, ,6 )  + ( 1  - p)MR(Fk,6*)= MR(F, ,6) .  

We now proceed to show that the estimators in G d  satisfy (2.7a)-
(2.7b). Our strategy is to impose successively restrictions on G which leave 
&GZ intact. This consists of forming a sequence of subclasses GI,g2,. . . ,G, 
such that G2 GI3 rF2 3 . . . 2 G63 &d.We begin with the definition of g1, 
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which forces B, to be a function only of B,-,, Y, and V,. In what follows, it 
will be convenient for definitional considerations to let Bo = (- w, w). 

DEFINITION.Let Bl c B consist of those 6 for which Bk is a.s. a function 
only of B,-,, Y,, and V, for k = 1,.. . ,n. 

Before continuing our development, we should clarify our use of almost sure 
(a.s.). By construction, the interval B, is measurable with respect to Yo,. . . ,Y,. 
Therefore, we shall mean any a.s. statement about B, to be with respect to 
F E 9,.In particular, it is convenient to consider the special case F, E c 
9, which does not depend on k .  

PROOF. We will prove that for any 6 E B - &,, there exists 6** which 
MR-dominates 6. This will imply 6 P &dso that ( B n  &d)c 8,. 

Pick 6 E B - 8, with its associated B,, . . . , B, from (2.5). Because 6 P &,, 
we can choose k such that B, is not a function of B,-,, Y, and V, on a set of 
positive measure. For any F, E F,,define 

Let BT, . . . , B,* be obtained from (2.5) for S*. Since 6 E B,-, and (4.3) is 
conditioned on B,-,, we have that S* E B,-,. In other words, B,X-, c B,-,, 
which in turn implies B; c Bj for j < k.  By Lemma 2.2, it follows that 
MR(T,  6*) I MR(T,6)  for j < k .  Furthermore, since B,-, is an equivariant 
function of Yo,. . . ,Y,, it follows from (ii) of Lemma 4.1 that M R ( 7 ,  a*) I 
MR(T,S)  for j 2 k.  

Define 6"" = (6 + 6*)/2. By Jensen's inequality, MR(T,  a**) IMR(T,  6) 
for j = 1,. . . ,n. Finally, PFn[Bk# B,*] 2 0 so that, by Lemma 4.2, 
M R ( 3 ,  a**) < MR(9,, 6). 

Our next subclass Giz restricts 6 to be a.s. antisymmetric. As will be seen, 
this property obtains many of the symmetric aspects of the conditions 
(2.7a)-(2.7b). 

DEFINITION.Let 8, c 8, consists of those 6 which are a.s. antisymmetric, 
that is, Bj(Y) = -Bj(-Y) a.s. for j = 1,. . . , n .  

PROOF. We will prove that for any 6 E &z - B,, there exists 6* which 
MR-dominates 6. This will imply 6 P B d  so that (6,n B d )  c Bz. 

Suppose 6 E B2 - 8,. Define the antisymmetric estimator S*(Y) = [6(Y) -
6(-Y)]/2. Note that S* also belongs to Bl and so belongs to'&z. By symme-
try, it is obvious that MR(5 ,  -a(-Y)) = MR(T,6)  so that by Jensen's 
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inequality, MR(5 ,  6*) I M R ( 5 , 6 )  for j = 1,. . . ,n.  Since, for some k, B, # 

Bg on a set of positive measure, MR(F,, 6*) < MR(&,6) by Lemma 4.2, 

The next subclass g3 restricts attention to those 6 for which Bk c BE-, 
implies B, = C, in (2.7a) a s .  (Bi- ,  is the interior of B, -,). 

DEFINITION.Let E3c &, consist of those 6 which satisfy the following. 
Corresponding to 6, there exists a sequence of (possibly infinite) constants 
W,, . . . ,W, such that whenever B, c Bi-,, B, = [F, - V,W,, F, + VkWk]as . ,  
k = 1, . . . ,n. 

PROOF. We will prove that, for any 6 E 8, - g3, there exists 6** which 
MR-dominates 6. This will imply 6 E & d  so that (8, n & d )  c g3. 

Pick 6 E 8, - g3 with its associated B,, . . . , B, from (2.5). Since 6 E E3, 
we can choose k so that 

has positive measure. For F > 0, define 

Note that A c lim,, ,A,. Now construct 

Because IAcand [1 - IAc]. B, -,are equivariant functions of Yo,. . . , Y,, it 
follows from (ii) of Lemma 4.1 that M R ( 5 ,  6*) I MR(5 ,  6) for j 2 k. 

Now consider the estimator S** = (1 - p)6 + pa* with p = ~ ~ / 2 .By 
Jensen's inequality, M R ( q ,  6"") I M R ( q ,  6) for j 2 k. Note that by (2.3) and 
Theorem 4.2, B, must satisfy W;(S,) = -W;( -S,). Thus, Bk # Bz on 
A nA,. Furthermore, because A nA, has positive measure for F small 
enough, MR(F,, a**) < MR(Fk,6) by Lemma 4.2. 

For j < k, note that because 

sup 16(Y) - 6*(Y)I = sup 16(Y) - 6*(Y)I 1 2 / ~  
Y ERn Y E A ,  

we have that 16** - 61 < E on A,, and 6"" = 6 on A:, where 6* = 6. Since 
6 + F E Bk-l on A, (and of course 6 E B,-, on A",, 6** E BkPl .  Letting 
B**, ,. . . ,B,*?, be the intervals associated with 6** from (2.5), this implies 
that By* c Bj for j < k. By Lemma 2.2, MR(5 ,  a**) I MR(T,6)  for j < k. 

When B, g Bi- ,, the behavior of B, is more complicated. The next 
subclass 4 restricts attention to 6 for which B, g Bi-, implies that B, = 

Bk-,  n [F, - U,, F, + U,], where U, = U,(Bk-,, Fk,V,). This accounts for 
the endpoint functions h in (2.7b). 



640 D. P. FOSTER AND E. I. GEORGE 

DEFINITION.Let E4 c 8, consist of those 6 with associated B,, . . . , B ,  
which when B, g BE-, satisfy the 'following: 

(i) if Yk2 
BL-I + B,-I 

, then B,f = B,f-, and yk 2 
B:+ B ,  

2 2 ' 
(4.7) B:-, + B,-, BL+ B ,  

(ii) if YkI , then B,= B,-, and YkI
2 2 . 

PROOF. Follow the proof of Theorem 4.3, replacing A, A ,  and 6* in 
(4.4)-(4.6) by 

A = ( Y :  B ,  g B i - ,  but (4.7) violated), 

n Y : B , c  F h - - , Y , + - , 
&i ' - 'I) 

The next subclass g5 restricts attention to those 6 for which C, c B:-, 
implies B,  = C, in (2.7a) a.s. 

DEFINITION.For 6 E 6,let W,, . . . ,W, be the sequence of constants 
associated with B,, . . . ,B ,  (via the definition of 8,)with the added stipulation 
that whenever B,  g B i - ,  as . ,  W, = m. Let g5c 4 consist of those 6 such 
that whenever [F, - v,w,, Y, + VkWk]c B:-,, B,  = [Yk- v,w,, F, + 
as . ,  k = l , . . . ,n. 

PROOF. We will prove that for any 6 E 4 - g5,there exists 6** which 
MR-dominates 6. This will imply 6 $? B d  so that (6n g d )  C 8 . .  

Pick 6 E 4- Gi5. Because 6 $? g6,'we can choose k such that for some 
E > 0, PF,[A1] > & and PF,[A2]> 0, where 

A,  = ( Y :[ B ; - E ,  B:+ E ]  c B : ,  and B,  = [yk- VkWk,yk+ v,w,]), 

A, = ( Y :[ F ,  - V,W, - E , ~ k  + V,W, + & ]  c B;,). 

Pick A ,  c A ,  such that PF,[A3]> 0, E ~ ~ [ I & - (BL-,  + B; , ) /21A3]I&'/2 
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and EFJ(B,'- Bi)Ia3] 5 r2/2. Define 

By construction B i  c Bh-l ( B i  corresponds to 6"). Thus Bq cBj for j < k, 
which in turn implies that MR(T,6*) 5 MR(T,6)  for j < k. For j 2 k, we 
appeal to Lemma 4.1, which shows that MR(T,  6") IMR(T,6)  for j 2 k by 
virtue of the fact that I[A1u and [ l  - I[A1u . Bh-l are equivariant 
functions of Yo,. . . ,Y,. 

Define 6"" = (6 + 6*)/2. By Jensen's inequality, M R ( q ,  6"") IMR(q ,  6) 
for j = l , . .  . , n .  Finally, PFn[B, # Bz] > 0 so that, by Lemma 4.2, 
MR(F,, 6"") < MR(Fk,6). 

Finally, the subclass g6 is defined by (2.7a)-(2.7b). Note that g6c g5 is 
obtained from g5 by restricting attention to those 6 with h, depending on at 
most one of B:-, or Bi-,  

DEFINITION.Let g6 consist of those 6 with B,, . . . , B, satisfying 
(2.7a)-(2.7b) a.s. 

THEOREM4.6. g6 is essentially complete. 

PROOF. Any 6 E g5 can be expressed in the form (2.7a)-(2.7b) except that 
the endpoint functions h, may depend on both Bi - and Bl-,  To obtain the 
final simplification, use that fact that, by (2.3) and Theorem 4.2, B, for 8 E g5 
must satisfy W,+(S,) = -W;(-S,), and apply the argument of Theorem 4.3, 
replacing A, A, and 6" in (4.4)-(4.6) by 

A = (Y: h, depends on both BL-, and Bh-l), 

Unfortunately, the description in (2.7a)-(2.7b) does not fully characterize 
the members of gd.  The remaining (and very difficult) open question is to 
find the restrictions which characterize the endpoint functions h ,. Simulation 
evidence seems to indicate that these functions need not be linear in F, as we 
had initially suspected. 

Finally, we remark that for the case where a2is known, all of the results of 
the section hold by setting Vk = 1 throughout. In this case, the class ~9is 
replaced by translation equivariant estimators of the form (2.8). 

5. A lower bound on the risk inflation. In this section, we obtain 
lower bounds for the risk inflation of any estimator. Of course, it is immediate 
that for any 6, RI(6) 2 1. However, we can do much better than this by 
exploiting Theorem 3.1. For simplicity, we shall restrict attention to the case 
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u 2  = 1and hence estimators of the form (2.8). The simplification afforded by 
this restriction makes the main ideas more transparent. Note that in what 
follows we use the results of the previous sections implicitly assuming they 
have been modified for the translation equivariant case. We begin with a result 
which provides a lower bound for the best we might hope for. 

THEOREM5.1. For u 2  = 1,infs RI(6) 2 M*, where, letting @ be the stan-
dard normal cdf, 

(5.1) M* = ( 1  + c2) ,2(n i-1) sup ( a2@(-(c + a) ) ) ] ] .  
01 

PROOF. By Theorem 3.1, attention may be restricted to S of the form (2.8). 
By Lemma 2.2, we may assume that W, < ca. Otherwise MR(F,, S) = m. Now 
note that 

(5.2) RI(6) 2 max[2 M R ( q ,  S),  ( n  + l ) M R ( Z ,  a ) ] .  

By Lemma 2.2, any 6 E d ' d  has MR(Fl, 6) 2 1 + WF. Also, for any a > 0, 

> 2a2@(-(W1 + a ) )2 E F " ~ ( I [ ~ Y ~ - ~ I >W l + a l )  -

since IYl - pI > Wl + a implies 16 - pI > a. Inserting both of these bounds 
into (5.2) yields the desired result. 

Using standard methods to approximate the tail area of @ in (5.0,  the 
following explicit bound is obtained. 

COROLLARY5.1. For u 2  = 1and large n,  RI(6) > (log n)/2. 

Using the fact that RI(Y,**) I 3.31og n from Section 1, we have the 
following result, which shows that the bound in Corollary 5.1 is tight (in order 
of magnitude). 

COROLLARY5.2. For u 2  = 1 and large n,  there exists a 6 such that 
RI(6) = O(1og n). 

I t  appears that one can do slightly better than YT** in terms of risk 
inflation. To pursue the best lower bound, we obtained Monte Carlo estimates 
of the risk inflation of various estimators. The version of 6 in (2.7a)-(2.7b) 
with h, = W, = 1 / d m  - 1 / 6  yielded RI(6) = log n for 2 In 5 40, just 
twice the lower bound of Theorem 5.1. 

Finally, we remark that the main results of this section can be extended in a 
natural way to the general case where u 2  is unknown. However, one must 
then consider the criterion max, ,,o[(k + l)MR(Fk,6)l for large k,. 
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6. Extensions to other distributions. In this section, we describe how 
our previous results can be easily extended to other distributional setups. 

EXAMPLE6.1 (Double exponential distribution). Consider the situation 
where we observe (Y,, . . . ,Y,) where (1.1) is replaced by 

(6.1) 3$ = {F:Y,, . . . ,Yk iid f (y )  = ;exp(-ly -PI)}, 

where p is unknown, and we want to estimate p (= EY,). Replacing (1.3) by 
the risk function 

the class of equivariant estimators for this problem are those that satisfy 

(6.3) 6 (a  + Y) = a + 6(Y).  

Analogous to (2.2) and (2.8), any such translation equivariant 6 can here be 
expressed as 

(6.4) 6(Y) = y, + ~ , ( s , , T , ) ,  k = 1, . . . ,n ,  

where Pk= median{Y,, . . . ,Y,), Zih = (Y,- GI, Sh= (Zlh, .. . ,Zhh) and T, = 

(Z,, ,,,, . . . ,Z,,). Note that, under F E 6, and S, are independent. The 
decomposition in (2.2) is not appropriate here since yk is sufficient here rather 
than Y, and V,. Replacing Y, by 6 and setting V, = 1, straightforward 
analogies of the previous results are easily seen to hold. In particular, the 
restriction (2.7a)-(2.7b) with these substitutions yields an essentially complete 
class. 

EXAMPLE6.2 (Chi-square distribution). Consider the situation where we 
observe (Y,, . . . ,Y,) where (1.1) is replaced by 

(6.5) 3$ = {F:Y,,. . . ,Yk iid u ~ ~ ; ) ,  

where u 2  is unknown, and we want to estimate u 2  (= EY,). [An equivalent 
formulation would have X,, . . . ,X ,  iid N(0,u2), which would come up in our 
previous formulation if interest focused on estimating u 2  with p being the 
nuisance parameter.] Such a problem might arise when estimating current 
volatility levels in financial time series, in which case Y, might be a squared 
daily return on an asset [see French, Schwert and Stambaugh (198711. Replac- 
ing (1.3) by the risk function 

(6.6) R ( F ,  6) = ~ ~- ( 6U ~ ) ~ / U ~ ,  

the class of equivariant estimators for this problem are those that satisfy 

(6.7) 6(bY) = b6(Y). 


Analogous to (2.21, any scale equivariant 6 can here be expressed as 


(6.8) 6(Y) = Y,~,(s,, T,) ,  k = 1 , . . . ,n ,  
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where Zik = y/',, Sk= (Zlk,.. . ,Zkk) and T,= (Z,+,,,, . . . ,Z,,). Note that 
under F E F,,Yk and S, are independent. 

Although Theorem 4.1 is not applicable because of the asymmetry of the X:, 
analogies of the previous results can still be obtained. In particular, the 
restriction (2.7a)-(2.7b) substituting Ck = [ y , ~ ; ,Y,W;] for (2.7a) and the 
endpoint functions Y, h,(B,+- ,/Y,) and Y, ~,(Y,/B;_,) into (2.7b) yields an 
essentially complete class. 
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